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Forecasting Commodity Prices using Futures: 

 The case of copper. 

 

 

Abstract 

This paper analyzes three alternatives for forecasting commodity spot prices and applies them 

to predicting copper prices. The first is using futures prices from either LME or COMEX. Second, 

using analysts’ expectations consensus, reported by Bloomberg. The third is jointly using futures 

and analysts’ expectations as input to a stochastic model that smooths its data by applying the 

Kalman Filter. All three alternatives are compared with the well-known no-change forecast 

benchmark and among themselves. The results show that when futures prices are relatively higher 

than spot prices, the model presented is the best alternative for forecasting copper prices at any 

horizon up until 24 months. Also, when prices are relatively lower than spot prices, the model is 

the best alternative for long-term forecasts and the LME futures prices for 1 to 12 months. 
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1. Introduction 

Commodities have become increasingly relevant for the real economy and provide financial 

assets related to many economic sectors like energy, industrial metals, precious metals, and 

agriculture. Exposure to their risks can be managed through trades on the spot and derivative 

markets, on individual commodities, or an index representing an aggregate portfolio (Tang & 

Xiong, 2012; Boyd et al., 2018). 

Forecasting the price of a given commodity is of the foremost interest to many economic 

agents. That is why many industry analysts regularly provide their price estimations for each 

commodity at different horizons. In addition to spot prices, futures contracts at different maturities 

are regularly traded.  

This paper analyzes different alternatives for using these information sources to obtain the best 

possible copper price forecasts for up to 24 months. We start by providing an overview of copper's 

importance, relevant spot and derivative markets, and where it is traded. We then present some 

forecasting models found in the literature to conclude this introduction with an overview of our 

proposed forecasting method, which will be described in more detail in the following sections. 

Copper, the chosen commodity to be analyzed in this paper, is essential nowadays due to its 

wide use in different industries. It is the world's third most used metal (following iron and 

aluminum), playing an indispensable role in several businesses in the financial environment (Wang 

et al., 2019).  

Forecasting copper prices is relevant for different reasons. For instance, movements in copper 

prices can be seen as an early indicator of global economic performance, given the importance of 

copper in various industries such as transportation, telecommunications, and construction (Buncic 
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& Moretto, 2015). Also, some countries like Chile1 and Zambia have become strongly dependent 

on copper prices (Sánchez Lasheras et al., 2015).  

Moreover, the role of copper has evolved from being a commodity that is only used as a 

primary input in the production process of final goods to a financial asset that is also held and 

traded for speculative purposes (Buncic & Moretto, 2015). Thus, copper prices are becoming 

challenging to forecast, given the number and diversity of market participants such as producers, 

consumers, investors, and governments (García & Kristjanpoller, 2019). 

Multiple models have been proposed in the literature to forecast copper prices. Different data 

have been used to input these models, including combinations of past spot prices, futures prices, 

and fundamental and non-fundamental variables. A wide variety of techniques and methods have 

been used. The simplest models use only past spot values to predict prices. For instance, the no-

change forecast model, in which prices are assumed to follow a random walk with no drift, makes 

the current spot price the best forecast (Alquist et al., 2013).  A more complex model is the wavelet-

ARIMA model Kriechbaumer et al. (2014). 

Cortazar et al. (2015) generate copper price forecasts, adding an estimation of the risk premium 

obtained from the CAPM model to the futures price. 

Buncic and Moretto (2015) use a dynamic model averaging and selection approach to forecast 

copper prices. This method selects the predictor variables for a model chosen from three different 

groups: (i) fundamentals, (ii) financialization, and (iii) exchange rates and stock prices. 

Sánchez Lasheras et al. (2015) propose two neural networks (multilayer perceptron neural 

network and Elman neural network). Chen et al. (2016) use a grey wave forecasting method to 

predict metal prices. Liu et al. (2017) predict copper prices using a machine learning algorithm. 

This method uses variables correlated with copper prices, such as gold, silver, crude oil, natural 

 
1 For example, in Chile this metal represents about half of Chilean exports and nearly 45% of Foreign Direct 
Investment (Brown & Hardy, 2019). 
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gas, lean hogs, coffee, the Dow Jones Index, and past copper prices. Dehghani & Bogdanovic 

(2018) propose a bat algorithm, and Dehghani (2018) uses an artificial neural network called gene 

expression programming.  

Alameer et al. (2019) propose ten input variables as predictors for copper price fluctuations 

using a hybrid model. The model employs a genetic algorithm to adjust the adaptive neuro-fuzzy 

inference system (ANFIS) parameters. Wang et al. (2019) predict copper prices with a hybrid 

predictive technique combining complex and artificial neural network techniques.  

This paper explores the forecasting performance of the Cifuentes et al. (2020) model.  This 

model integrates analysts' forecasts and futures prices by proposing a three-factor stochastic model 

to estimate futures prices, expected prices, and the term structure of risk premiums for copper. The 

model uses both futures prices and analysts’ expectations obtained from Bloomberg. Initially 

developed for estimating risk premiums, this model will now be studied in its forecasting ability 

for copper prices. The research hypothesis is that including futures price data outperforms using 

only analysts’ forecasts of short and medium-term2 copper prices. 

The reference price to be forecasted is the London Metal Exchange (LME) copper price since 

this exchange is the primary international market for copper and provides appropriately located 

storage facilities to enable market participants to take or make physical deliveries (Dooley & 

Lenihan, 2005; Watkins & McAleer, 2004). Besides, it is the biggest futures exchange3 for copper, 

handling more than half of world trades and a world reference for copper prices (Ciner et al., 2020; 

Li & Li, 2015). Futures prices are also obtained from the New York Commodity Exchange 

(COMEX) and analysts’ expectations from Bloomberg (Cortazar et al., 2021). 

 
2 A 24-month horizon. 
3 The 3 biggest futures exchange are the London Metal Exchange (LME), the New York Commodity 
Exchange (COMEX) and the Shanghai Futures Exchange (SHFE).  
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Different performance metrics are used to analyze how good the proposed joint model is at 

forecasting copper prices, compared to using futures or analysts’ expectations individually and to 

the no-change benchmark. 

The paper is organized as follows. Section 2 presents the forecasting alternatives that will be 

compared. Section 3 describes the metrics under which model performance will be measured. 

Section 4 shows the data. Section 5 summarizes the results of the forecasting alternatives under 

each performance metric.  Section 6 discusses the best forecasting alternatives under different price 

scenarios. Finally, Section 7 concludes. 

2. Forecasting Models 

In what follows, we present the forecasting alternatives for copper spot prices that will be 

compared.  

2.1 No-change 

The simplest benchmark for measuring the forecast performance of a given model is to 

compare it with the no-change forecast. This assumes that prices follow a no-drift, random walk, 

in which the best forecast is the current spot price. 

𝑆መ௧ା௛|௧ ൌ 𝑆௧  

where 𝑆መ௧ା௛|௧ is the prediction of the spot price in h periods and 𝑆௧ is the current spot price. 

2.2 Futures 

Another forecasting alternative is to use the futures price as an unbiased forecast (Cortazar et 

al., 2015). This assumes there are no relevant risk premiums. We will test two alternative 

implementations, using futures from the London Metal Exchange (LME) or the New York 

Commodity Exchange (COMEX). 
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2.3 The Analysts’ Expectations-Consensus  

Analysts from different institutions provide expectations for some quarters and years ahead. 

Bloomberg delivers each of these predictions. Given that various analysts provide forecasts, they 

are very volatile. To summarize these predictions, Bloomberg offers the median of the analysts’ 

expectations for each horizon in what they call the Consensus. 

2.4 The proposed Model (Joint Futures and Analysts’ Expectations) 

The proposed model is a joint futures and analysts’ expectations model used to estimate the 

term structure of risk premiums for copper in Cifuentes et al. (2020) and for oil in Cortazar et al. 

(2022) and to forecast oil prices in Cortazar et al. (2021). 

We now propose to use this model to analyze its copper price forecasting performance 

compared to the other alternatives presented before that use similar input data but take each one 

individually.  

2.4.1 Model definition 

Let 𝑆௧ be the spot price at time t, then: 

ln 𝑆௧ ൌ 𝑌௧ ൌ ℎᇱ𝑥௧ 

𝑑𝑥௧ ൌ ൮െ𝐴𝑥௧ ൅ ൦

𝑏ଵ
0
⋮
0

൪൲𝑑𝑡 ൅ 𝑑𝑤௧ 

where ℎ is an 𝑛 𝑥 1 vector of constants, 𝑥௧ is an 𝑛 𝑥 1 vector of state variables, 𝑏ଵ is a scalar, 

𝐴 is an 𝑛 𝑥 𝑛 upper triangular matrix with its first diagonal element being zero and the remaining 

elements all different and strictly positive. Let 𝑑𝑤௧ be a 𝑛 𝑥 1 vector of uncorrelated Brownian 

motions such that: 

𝑑𝑤௧𝑑𝑤௧ᇱ ൌ 𝐼 𝑑𝑡 

where 𝐼 is an 𝑛 𝑥 𝑛 identity matrix. 



8 
 

Let Π௧ be the commodity risk premium at time 𝑡. We assume that: 

Π௧ ൌ 𝜆 ൅ Λ 𝑥௧ 

Hence, the risk-adjusted version of the model is: 

𝑌௧ ൌ ℎᇱ𝑥௧ 

𝑑𝑥௧ ൌ ൮െሺ𝐴 ൅ Λሻ𝑥௧ ൅ ൦

𝑏ଵ
0
⋮
0

൪ െ 𝜆൲𝑑𝑡 ൅ 𝑑𝑤௧
ொ 

where 𝑑𝑤௧
ொ is a Brownian motion under the risk-neutral measure 𝑄, 𝜆 is an 𝑛 𝑥 1 vector and 

Λ is an 𝑛 𝑥 𝑛 matrix that needs no additional condition. 

The expected price under the risk-adjusted (futures) and under the historical process are:  

𝐹௧ሺTሻ ൌ 𝐸௧
୕ሺ𝑥்ሻ ൌ 𝑒ିሺ஺ାஃሻሺ்ି௧ሻ𝑥௧ ൅ ቆන

்ି௧

଴
𝑒ିሺ஺ାஃሻఛ𝑑𝜏ቇ ሺ𝑏 െ 𝜆ሻ 

𝐸௧ሺ𝑥்ሻ ൌ 𝑒ି஺ሺ்ି௧ሻ𝑥௧ ൅ ቆන
்ି୲

଴
𝑒ି஺ఛ𝑑𝜏ቇ 𝑏 

The implicit volatilities of futures σி and expected prices σா are: 

𝜎ி ൌ ඥℎᇱ𝑒ିሺ஺ାஃሻሺ்ି௧ሻ𝑒ିሺ஺ାஃሻሺ்ି௧ሻᇲℎ 

𝜎ா ൌ ඥℎᇱ𝑒ି஺ሺ்ି௧ሻ𝑒ି஺ሺ்ି௧ሻᇲℎ 

2.4.2 Model estimation 

The state variables and the model's parameters are estimated using the Kalman filter (Kalman, 

1960). This method uses all the available data in each iteration to estimate the state variables' 

optimal value, defined by the measurement and the transition equations. 

The measurement equation indicates the relationship between the observable variable vector 

𝑧௧ and the state variable vector 𝑥௧, as follows: 

𝑧௧ ൌ H୲𝑥௧ ൅ 𝑑௧ ൅ 𝑣௧      𝑣௧~𝑁ሺ0,𝑅௧ሻ 
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where 𝑧௧  is an 𝑚௧ 𝑥 1  vector that contains logarithm of price observations (futures and 

expected spot prices) at time 𝑡 . 𝐻௧  is an 𝑚௧ 𝑥 𝑛  matrix, 𝑥௧  is an 𝑛 𝑥 1 vector, 𝑑௧  is an 𝑚௧ 𝑥 1 

vector, and, 𝑣௧ is a measurement error vector of 𝑚௧ 𝑥 1 dimension with zero mean and covariance 

𝑅௧. In the model, 𝑚௧ depends on the number of observations at each time. Thus, the dimension of 

𝑧௧, 𝐻௧, 𝑑௧, 𝑣௧,  𝑦 𝑅௧ can vary in each iteration.  

The expected spot prices, proxied by the analysts’ expectations, are nosier than futures prices, 

so there will be two measurement errors, and the matrix 𝑅௧ is defined by: 

𝑅௧ ൌ

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜎௙ଶ ⋯ 0 0 ⋯ 0
⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 ⋯ 𝜎௙ଶ 0 ⋯ 0

0 ⋯ 0 𝜎௘ଶ ⋯ 0
⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 ⋯ 0 0 ⋯ 𝜎௘ଶ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

The second equation is the transition equation, which describes the stochastic process that the 

state variables follow: 

𝑥௧ାଵ ൌ �̅�𝑥௧ ൅ 𝑐̅ ൅ 𝑤௧       𝑤௧~𝑁ሺ0,𝑄ሻ 

where �̅� is an 𝑛 𝑥 𝑛 matrix, and 𝑐̅ is an 𝑛 𝑥 1 vector. �̅� and 𝑐̅ represent the discretization of the 

process. In the above expression 𝑤௧ is a vector of random variables with zero mean and an 𝑛 𝑥 𝑛 

covariance matrix 𝑄. 

The parameters of the model are estimated by maximum likelihood. 

3. Performance metrics 

The above forecasting alternatives will be compared to the no-change forecast, which assumes 

prices follow a random walk. Thus, each of the other three models will be first compared with this 

no-change benchmark and later between them. 
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We use three performance metrics to measure each model's forecasting accuracy. These are 

Root Mean Squared Error, Relative Mean Squared Prediction Error, and Dstat.  We now provide 

a brief description of each one. 

3.1 Root Mean Squared Error 

The first performance metric is to compute the root of the squared errors. This metric is used 

in many studies on copper forecasting (Hesam et al., 2018; Kriechbaumer et al., 2014; Wets & 

Rios, 2015). This metric is calculated as follows: 

𝑅𝑀𝑆𝐸௛ ൌ ඩ
1
𝑁
෍൫𝑆௧ା௛|௧ െ 𝑆መ௜,௧ା௛|௧൯

ଶ
ே

௧

 

3.2 Relative Mean Squared Prediction Error 

A second metric is the relative mean squared prediction error, which divides the mean squared 

prediction error of the model by that of the no-change forecast error. 

The Relative Mean Squared Prediction Error  (Watson & Stock, 2004) is defined  as: 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑀𝑆𝑃𝐸௜ ൌ
∑ ൫ୗ౪శ౞|౪ିௌመ೔,೟శ೓|೟൯

మಿ
೟

∑ ൫ୗ౪శ౞|౪ିௌመబ,೟శ೓|೟൯
మಿ

೟
  

where 𝑖 is the forecasting model analyzed, and 𝑖=0 refers to the no-change benchmark.   

3.3 Dstat 

Finally, the most straightforward forecasting metric is the directional prediction, i.e., if prices 

will go up or down at a given horizon.  

The Directional Change statistic (Yao & Tan, 2000) is calculated as follows: 

𝐷௦௧௔௧
௛ ൌ ଵ

ே
∑ 𝑎௧,௛௧∈்   

where: 
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𝑎௧,௛ ൌ ൜1        𝑖𝑓 ሺ𝑆௧ା௛ െ 𝑆௧ሻ൫𝑆መ௧ା௛ െ 𝑆௧൯ ൐ 0
0                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

A 𝐷௦௧௔௧
௛  greater than 0.5 means that the obtained prediction is better than the no-change model, 

which is expected to have a 𝐷௦௧௔௧
௛  0.5.                                  

4. Data 

In this section, we describe the data that will be used to compute the performance of the 

alternative forecasts. It consists of spots, futures, analysts’ expectations, and Bloomberg’s 

consensus expectations from January 2010 to December 2020.  

4.1 Spot prices 

We will use the London Metal Exchange-LME cash prices as the spot prices to be forecasted. 

The LME is the largest copper trading market and a well-recognized world reference for prices of 

this commodity (Ciner et al., 2020; Park & Lim, 2018; Li & Li, 2015; Dooley & Lenihan, 2005; 

Watkins & McAleer, 2004). Forecasts will be done yearly, out-of-sample, for the following 24 

months. 

To illustrate how variable these prices are, Figure 4.1 plots them from January 2010 to 

December 2020. 
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Figure 4.1: Copper spot prices from January 2010 to December 2020. 

4.2 Futures prices 

The two primary sources of copper futures prices are LME in the UK and COMEX in the 

USA. In the LME exchange, futures expire at the current month and for the following 123 months. 

In the COMEX exchange, futures expire at the current month, the next 23 months, and any March, 

May, July, September, and December within 60 months. 

We will use futures prices for two purposes: first, as one of the inputs to the proposed Model 

(joint futures and analysts’ expectations) described before. Following Cifuentes et al. (2020), we 

use LME weekly futures prices for the contract closest to its maturity and those maturing every six 

months.  Figure 4.2 shows the LME weekly copper futures prices from January 2010 to December 

2020, and Table 4.1 summarizes the LME data used as input to the proposed model. 
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Figure 4.2: LME weekly copper futures prices from January 2010 to December 2020 

Table 4.1: LME weekly Copper Futures Prices used as input to the model (in sample), 

grouped by year. 

Year Amount of data 

2010 1040 

2011 1040 

2012 1040 

2013 1040 

2014 1060 

2015 1040 

2016 1040 

2017 1040 

2018 1040 

2019 1040 

Average 1042 
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A second way of using futures data is as the forecast for the next 24 months of the spot prices.  

The following section compares forecasting performance using LME or COMEX futures 

contracts.  The LME futures used as the spot price forecast include weekly data for contracts with 

maturities up to 24 months. The following figure and table describe this data. 

 

Figure 4.3: LME weekly copper futures prices from January 2010 to December 2020  

Table 4.2: LME weekly Futures Prices up to 24 months (in sample) by year. 

Year Amount of data 

2010 1243 

2011 1243 

2012 1245 

2013 1245 

2014 1266 

2015 1243 

2016 1244 

2017 1244 

2018 1245 

2019 1243 

Average 1246.1 
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As mentioned, COMEX futures prices may also be used as the spot price forecast. Figure 4.4 

and Table 4.3 present this data. 

 Figure 4.4: 

COMEX weekly copper futures prices from January 2010 to December 2020  

Table 4.3: COMEX weekly Futures Prices up to 24 months (in sample) by year. 

Year Amount of data 

2010 1250 

2011 1249 

2012 1236 

2013 1231 

2014 1258 

2015 1248 

2016 1251 

2017 1251 

2018 1273 

2019 1286 

Average 1253.3 
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4.3 The Analysts’ Expectations-Consensus 

Bloomberg reports the forecasts made by various analysts from different financial institutions. 

There are two types of forecasts: quarterly and annual. These predictions are made for the average 

price each quarter or year. Following Cifuentes et al. (2020), they represent the price in the middle 

of their period.  

Quarterly forecasts are available for the current quarter and for the following five quarters. 

Annual forecasts are valid for the year the forecast is made and for the next four years. These 

forecasts are not available on a previously defined schedule. Analysts can forecast some, all, or 

none of these horizons at any given date.  All forecasts in the same week and for the same horizon 

are averaged to obtain weekly analysts' expectation data. 

 Figure 4.5 shows all weekly analysts’ expectations data, while Table 4.4 summarizes the 

analysts’ weekly expectations data for up to 24 months. 

 

   

Figure 4.5: Analysts’ Expectations Weekly data from January 2010 to December 2020 
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Table 4.4: Analysts’ Expectations up to 24 months (in sample), by year 

Year Amount of data 

2010 240 

2011 278 

2012 344 

2013 621 

2014 711 

2015 740 

2016 783 

2017 746 

2018 561 

2019 331 

Average 535.5 

 

Given the variety of analysts, horizons, and dates, data is particularly volatile and difficult to 

use directly.  Figure 4.6 shows how volatile the analysts’ data is during the week. 

 

Figure 4.6: Futures and analysts’ expected price data, third week, March 2017 
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It becomes clear that to use this data for forecasting effectively, some smoothing must be done.   

We consider two ways of processing this data. The first one uses what Bloomberg reports as 

the consensus, the median of the available analyst forecasts for each horizon on a given week. 

Figure 4.7 and Table 4.5 present this data.  

 

 Figure 4.7: Bloomberg’s weekly Consensus expectations  

Table 4.5:  Bloomberg’s weekly Consensus expectations (in sample) by year 

Year Amount of data 

2010 411 

2011 460 

2012 473 

2013 490 

2014 458 

2015 453 

2016 466 

2017 425 

2018 391 

2019 407 

Average 443.4 
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The second way of smoothing this volatile data is by applying the Kalman Filter to all data 

shown in Figure 4.5 when calibrating our proposed model. 

5. Forecasting Results  

In what follows, we summarize the out-of-sample results of weekly applying the alternative 

forecasts to 1-to-24-month horizons from 2014 to 20204. Each result is ranked against the standard 

no-change forecast benchmark, boldfacing the best. 

5.1 Forecasting Results Using Futures 

The forecast for any given horizon is calculated as the weighted average of the prices of the 

two futures with maturities closest to the horizon.  Tables 5.1, 5.2, and 5.3 present the RMSE, 

Relative MSPE, and Dstat metrics using futures when implemented with the LME or the COMEX 

data. 

Table 5.1 RMSE Performance Metric using Futures from 2014 to 2020, implemented with 

LME, COMEX. The “BEST” column shows the best model for each horizon. 

Horizon (months) LME COMEX BEST 

1 0.147 0.150 LME 

3 0.262 0.265 LME 

6 0.352 0.354 LME 

9 0.407 0.410 LME 

12 0.494 0.498 LME 

15 0.551 0.557 LME 

18 0.605 0.613 LME 

21 0.642 0.651 LME 

24 0.664 0.671 LME 

Horizons up to 12 
months 

0.354 0.3577 LME 

Horizons between 
13 and 24 months 

0.604 0.611 LME 

Horizons up to 24 
months 

0.485 0.490 LME 

The boldface indicates that the model performs better than the no-change benchmark. 

 

 
4 For the year 2020 forecasting errors are computed only for horizons up to 12 months 
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Table 5.2 Relative MSPE Performance Metric using Futures from 2014 to 2020 implemented 

with LME, COMEX. The “BEST” column shows the best model for each horizon. 

Horizon 
(months) 

LME COMEX BEST 

1 0.987 1.018 LME 

3 0.978 0.997 LME 

6 0.972 0.984 LME 

9 0.965 0.975 LME 

12 0.968 0.985 LME 

15 0.971 0.992 LME 

18 0.971 0.997 LME 

21 0.983 1.009 LME 

24 0.988 1.010 LME 

Horizons up to 
12 months 

0.970 0.983 LME 

Horizons 
between 13 and 

24 months 
0.976 1.000 LME 

Horizons up to 
24 months 

0.974 0.995 LME 

The boldface indicates that the model performs better than the no-change benchmark. 

 

Table 5.3 Dstat Performance Metric using Futures 2014-2020 implemented with LME, 

COMEX. The “BEST” column shows the best model for each horizon. 

Horizon (months) LME COMEX BEST 

1 0.587 0.507 LME 

3 0.571 0.503 LME 

6 0.644 0.559 LME 

9 0.606 0.554 LME 

12 0.589 0.510 LME 

15 0.570 0.563 LME 

18 0.564 0.610 COMEX 

21 0.533 0.628 COMEX 

24 0.544 0.659 COMEX 

Horizons up to 12 
months 

0.599 0.526 LME 

Horizons between 
13 and 24 months 

0.558 0.600 COMEX 

Horizons up to 24 
months 

0.580 0.560 LME 

The boldface indicates that the model performs better than the no-change benchmark. 
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Several conclusions may be obtained from the above tables. First, futures prices provide a 

better forecast for most metrics and horizons than the no-change benchmark. Second, LME futures 

give better forecasts than the no-change benchmark for all metrics and horizons. Lastly, LME 

futures provide better forecasts than COMEX futures for almost all horizon and performance 

metrics. This result is not surprising, given that the spot price to be forecasted is the cash price 

from the LME exchange.  

If, for any reason, LME futures are not available, COMEX futures provide better forecasts than 

those of the no-change benchmark for some metrics, especially for horizons from 3 to 18 months.  

5.2 Forecasting Results Using Analysts’ Expectations-Consensus 

 As discussed, analysts’ expectations are very volatile, so some smoothing is required. In this 

section, we analyze the performance using the consensus of the analysts’ expectations, defined by 

the median of the analysts’ predictions, as reported by Bloomberg. 

The forecast for any given horizon is calculated as the weighted average of the two analyst 

consensus forecasts closest to the horizon. 

Table 5.4 shows that consensus forecasts are better than the no-change benchmark for all 

performance metrics for only 21- and 24-month horizons. The Dstat metric, which indicates if 

prices are going up or down, provides good results, especially for longer horizons.  

In summary, using analysts’ forecasts, represented by the consensus provided by Bloomberg, 

gives mixed results, thus shedding some doubts on the value of considering analysts’ expectations 

as a valuable data source.  This preliminary conclusion, however, will be revised in the next 

section.  
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Table 5.4 Performance Metrics using Analysts’ Expectations-Consensus from 2014 to 2020 

Horizon (months) RMSE 
Relative 
MSPE 

Dstat 

1 0.230 2.392 0.565 

3 0.321 1.466 0.545 

6 0.409 1.317 0.462 

9 0.477 1.322 0.450 

12 0.553 1.215 0.494 

15 0.600 1.151 0.533 

18 0.623 1.031 0.592 

21 0.642 0.981 0.620 

24 0.611 0.839 0.663 

Horizons up to 12 
months 

0.416 1.340 0.493 

Horizons between 
13 and 24 months 

0.617 1.019 0.586 

Horizons up to 24 
months 

0.518 1.113 0.536 

The boldface indicates that the model performs better than the no-change benchmark. 

5.3 Forecasting Results for the Model (Joint Futures and Analysts’ Expectations) 

In this section, we explore the value of using analysts’ expectations, jointly with futures prices, 

in a forecasting model calibrated using the Kalman Filter. 

5.3.1 Model Fit 

The model must be calibrated several times to provide out-of-sample spot copper forecasts. 

The first data set used to calibrate model parameters includes prices from 2010 to 2013, which are 

then used to forecast prices during 2014 for the next 24 months. Then, one year is added to the 

calibration data set, parameters are estimated, and forecasts are done during 2015. This process 

continues until the last data set covers prices from 2010 to 2019 to make forecasts for 2020. The 

model uses all the available futures and analysts’ expectation data to jointly estimate the expected 

and the futures curves.  
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Figure 5.1 presents the expected and futures curves, and data, for the third week of March of 

2017. It can be seen that the expected curve does not perfectly fit the available data because of its 

volatility. However, the Kalman Filter considers the data for that week and all the past data, 

providing a smooth expectation curve for each date. On the other hand, the futures curve fits the 

data much better because it is less volatile.  

 

 

Figure 5.1: Expected and futures curves and data, third week, March 2017 

Tables 5.5 and 5.6 compute the Mean Absolute Percentage Error (MAPE) for the in-sample 

and out-of-sample data. It can be seen that the futures curves have a better fit, as expected. Also, 

the average MAPE is similar between the in-sample and the out-of-sample calibrations. 
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Table 5.5: Mean Absolute Percentage Error of expected and futures curves (in-sample) 

Calibration 
Years 

MAPE (%) between 

Curve and Futures 
Prices Data 

Curve and Analysts 
Expected Prices Data 

2010-2013 0.21% 6.77% 

2010-2014 0.21% 6.62% 

2010-2015 0.19% 6.59% 

2010-2016 0.18% 6.71% 

2010-2017 0.18% 6.86% 

2010-2018 0.18% 6.88% 

2010-2019 0.17% 6.85% 

Average 0.19% 6.76% 

Standard 
Deviation 

0.01% 0.12% 

 

 

Table 5.6: Mean Absolute Percentage Error of expected and futures curves (out-of-sample).    

The “Year” column shows the out-of-sample year for each Calibration Year. 

Calibration 
Years 

Year 

MAPE (%) between 

Curve and Futures 
Prices Data 

Curve and Analysts 
Expected Prices Data 

2010-2013 2014 0.29% 5.36% 

2010-2014 2015 0.36% 6.25% 

2010-2015 2016 0.11% 11.51% 

2010-2016 2017 0.18% 8.13% 

2010-2017 2018 0.20% 5.67% 

2010-2018 2019 0.11% 7.14% 

2010-2019 2020 0.13% 5.10% 

Average 0.19% 7.02% 

Standard Deviation 0.10% 2.25% 
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5.3.2 Model Results 

Table 5.7 shows that using both futures and analysts’ expectations as inputs in the proposed 

model provides better forecasts than the no-change benchmark under all metrics for horizons of 1 

month and 12 to 24 months. In addition, this holds for the Dstat metric for all horizons. 

Table 5.7 Performance Metrics for the Model from 2014 to 2020 

Horizon (months) RMSE 
Relative 
MSPE 

Dstat 

1 0.147 0.978 0.579 

3 0.265 1.001 0.542 

6 0.362 1.028 0.529 

9 0.415 1.003 0.523 

12 0.472 0.885 0.513 

15 0.494 0.780 0.567 

18 0.509 0.688 0.620 

21 0.516 0.634 0.675 

24 0.507 0.576 0.751 

Horizons up to 12 
months 

0.356 0.981 0.537 

Horizons between 
13 and 24 months 

0.505 0.684 0.629 

Horizons up to 24 
months 

0.431 0.770 0.579 

The boldface indicates that the model performs better than the no-change benchmark. 
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6. Comparing Forecasting Alternatives 

In this section, we analyze the forecasting performance of the three alternatives using futures 

prices, consensus expectations, and the model.  As a robustness check, we split the out-of-sample 

data into two parts.  

 Given that it is well-known that, depending on market and inventory conditions, futures prices 

behave differently, sometimes in contango and others in backwardation, we consider this when 

dividing the data. We must consider, however, that these two price regimes occur with different 

frequencies. 

In order to generate the two files, we split the out-of-sample futures depending on whether the 

difference between futures and spot prices is high or low compared to the median of the 

corresponding in-sample data. Thus, the out-of-sample data is divided into two parts: when 

“futures are high”, which means that futures are in a relative contango, and when “futures are low” 

or in a relative backwardation.   

6.1 Forecasting when “futures are high” (relative contango) 

Tables 6.1 and 6.2 show that when futures prices are relatively high, compared to spot prices 

(relative contango), the model performs much better than the alternatives for all horizons regarding 

RMSE and Relative MSPE. This shows that analysts’ expected prices, when used as input with 

futures prices, are valuable for forecasting purposes. 

On the other hand, Table 6.3 shows that for forecasting the direction of price movements, using 

detailed analysts’ expectations is not valuable. In this case, it is better to use LME futures prices 

for short-term horizons and consensus forecasts for long horizons.   
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Table 6.1: RMSE for the Model, LME, and Consensus from 2014 to 2020-High Futures.     

The “Best” column shows the best alternative for each horizon.  

Horizon (months) Model LME Consensus Best 

1 0.153 0.154 0.231 Model 

3 0.264 0.279 0.316 Model 

6 0.364 0.388 0.428 Model 

9 0.393 0.417 0.461 Model 

12 0.420 0.472 0.507 Model 

15 0.429 0.508 0.520 Model 

18 0.396 0.529 0.479 Model 

21 0.425 0.578 0.516 Model 

24 0.429 0.613 0.486 Model 

Horizons up to 12 
months 

0.345 0.370 0.411 Model 

Horizons between 
13 and 24 months 

0.424 0.552 0.508 Model 

Horizons up to 24 
months 

0.387 0.470 0.462 Model 

The boldface indicates the best-performing alternative. 

 

Table 6.2: Relative MSPE for the Model, LME, and Consensus from 2014 to 2020- High 

Futures.   The “Best” column shows the best alternative for each horizon.  

Horizon (months) Model LME Consensus Best 

1 0.983 0.989 2.237 Model 

3 0.881 0.984 1.263 Model 

6 0.862 0.982 1.191 Model 

9 0.880 0.989 1.208 Model 

12 0.789 0.997 1.148 Model 

15 0.716 1.005 1.050 Model 

18 0.565 1.011 0.831 Model 

21 0.555 1.029 0.821 Model 

24 0.506 1.032 0.650 Model 

Horizons up to 12 
months 

0.858 0.988 1.218 Model 

Horizons between 
13 and 24 months 

0.599 1.016 0.859 Model 

Horizons up to 24 
months 

0.680 1.007 0.972 Model 

The boldface indicates the best-performing alternative. 
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Table 6.3: Dstat for the Model, LME, and Consensus from 2014 to 2020-High Futures.      

The “Best” column shows the best alternative for each horizon.  

Horizon (months) Model LME Consensus Best 

1 0.576 0.587 0.565 LME 

3 0.552 0.571 0.545 LME 

6 0.593 0.644 0.462 LME 

9 0.534 0.606 0.450 LME 

12 0.495 0.589 0.494 LME 

15 0.521 0.570 0.533 LME 

18 0.582 0.564 0.592 Consensus 

21 0.605 0.533 0.620 Consensus 

24 0.696 0.544 0.663 Model 

Horizons up to 12 
months 

0.549 0.599 0.493 LME 

Horizons between 
13 and 24 months 

0.585 0.558 0.586 Consensus 

Horizons up to 24 
months 

0.567 0.580 0.536 LME 

The boldface indicates the best-performing alternative. 

 

6.2 Forecasting when “futures are low” (relative backwardation) 

Tables 6.4, 6.5, and 6.6 present the performance results of the three alternatives when the 

futures prices are relatively low compared to spot prices (relative backwardation). Results are very 

consistent for all three performance metrics, showing that, in this case, it is better to use LME 

futures prices for short-term horizons (until 12 months) and the model for longer horizons. 
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Table 6.4: RMSE for the Model, LME, and Consensus from 2014 to 2020- Low Futures.  

The “Best” column shows the best alternative for each horizon.  

Horizon (months) Model LME Consensus Best 

1 0.140 0.141 0.228 Model 

3 0.267 0.241 0.327 LME 

6 0.358 0.292 0.382 LME 

9 0.444 0.394 0.499 LME 

12 0.537 0.523 0.613 LME 

15 0.586 0.615 0.714 Model 

18 0.689 0.739 0.849 Model 

21 0.691 0.778 0.877 Model 

24 0.674 0.786 0.866 Model 

Horizons up to 12 
months 

0.370 0.332 0.424 LME 

Horizons between 
13 and 24 months 

0.642 0.698 0.797 Model 

Horizons up to 24 
months 

0.494 0.507 0.597 Model 

The boldface indicates the best-performing alternative. 

 

Table 6.5: Relative MSPE for the Model, LME, and Consensus from 2014 to 2020-Low 

Futures. The “Best” column shows the best alternative for each horizon.  

Horizon (months) Model LME Consensus Best 

1 0.972 0.984 2.583 Model 

3 1.187 0.968 1.781 LME 

6 1.428 0.948 1.622 LME 

9 1.185 0.930 1.490 LME 

12 0.989 0.937 1.287 LME 

15 0.848 0.935 1.258 Model 

18 0.808 0.931 1.227 Model 

21 0.732 0.926 1.178 Model 

24 0.680 0.923 1.120 Model 

Horizons up to 12 
months 

1.170 0.941 1.531 LME 

Horizons between 
13 and 24 months 

0.786 0.929 1.210 Model 

Horizons up to 24 
months 

0.886 0.932 1.293 Model 

The boldface indicates the best-performing alternative. 
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Table 6.6: Dstat for the Model, LME, and Consensus from 2014 to 2020- Low Futures.                  

The “Best” column shows the best alternative for each horizon.  

Horizon (months) Model LME Consensus Best 

1 0.582 0.587 0.565 LME 

3 0.531 0.571 0.545 LME 

6 0.440 0.644 0.462 LME 

9 0.507 0.606 0.450 LME 

12 0.538 0.589 0.494 LME 

15 0.643 0.570 0.533 Model 

18 0.699 0.564 0.592 Model 

21 0.848 0.533 0.620 Model 

24 0.900 0.544 0.663 Model 

Horizons up to 12 
months 

0.522 0.599 0.493 LME 

Horizons between 
13 and 24 months 

0.723 0.558 0.586 Model 

Horizons up to 24 
months 

0.600 0.580 0.536 Model 

The boldface indicates the best-performing alternative.  
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7. Conclusions  

We have argued that forecasting copper prices is relevant for many agents, including investors 

and governments. However, research is still underway to find models and data sources that could 

be more useful in this endeavor. 

This paper presents three alternatives to forecast spot prices for horizons 1 to 24 months. First, 

futures prices were used, and this alternative was implemented using either LME or COMEX 

futures. We concluded that, in this case, it was better to use LME futures.  

Second, we considered using analysts’ expectations and discussed how volatile this data is, 

stating the convenience of using some smoothing process. For this alternative, we initially used 

the consensus expectations, reported by Bloomberg as the median of the available data for a given 

horizon. 

The third alternative presented was to jointly consider futures and analysts’ expectations as 

input to a model that smooths data using the Kalman Filter. All three alternatives, Futures, 

Consensus, and Model, were compared with the well-known no-change forecast benchmark and 

among themselves under different price scenarios. 

The main conclusions that can be drawn from these exercises are the following. First, analysts’ 

expectations are a valuable source of data that can be useful for forecasting copper prices. Second, 

being this data very volatile, smoothing by using Bloomberg´s Consensus data (which provides 

the median forecast) is not helpful. Third, when futures prices are relatively higher than spot prices 

(compared with recent history), the presented model is the best alternative for forecasting copper 

prices at any horizon between 1 and 24 months. Fourth, when prices are relatively lower than spot 

prices (compared with recent history), the model is the best alternative for long-term forecasts and 

the LME futures prices for 1 to 12 months. 
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